

Successful PowerPoint conference posters

How to make the most of our templates and achieve the best results

The University's PowerPoint templates for conference posters are designed and managed by the Design & Print Studio (DPS).

Our aim is to produce templates that are easy to use, but still produce a finished poster that looks professional and is easy for an audience to understand.

DPS can also print your posters for you. Normally, we will print any poster based on the template, but this guide helps you ensure that your poster meets a good standard of legibility and credibility. In very rare circumstances where posters fall well below these standards, we may not be able to print it without a few changes first. In these cases, we will always offer advice and support to help you improve the poster and get it off to print as soon as possible.

If you have any queries about the templates, please do get in touch with dps@reading.ac.uk.

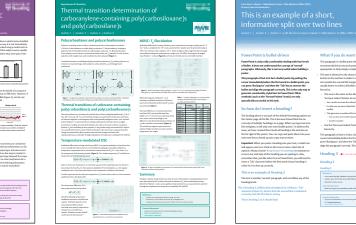
This guide contains ...

When to use our templates

Good practice	Quick disclaimer: in order to illustrate various
Fair examples	design concepts, the examples shown in this presentation have been amended by DPS and
Poor examples	are not actual examples of our colleagues' work.

Before and after and our premium design service

When to use the templates


This section gives you advice about when you should (and shouldn't) use the University's conference poster templates:

When to use the templates: \circlearrowright

- When the University is the sole contributor to the research.
- When collaborating with other universities: if Reading staff are doing the work and it will not cause controversy, use the University templates and add in partner institutions.
- When you are working for official University sub-brands (e.g. TSBE, CfAM). These sub-brands have their own custom University poster templates. DPS will have these on file if you need them.


<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header>

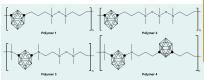
Examples of the University poster templates in use.

Don't use the templates: \heartsuit

- If your poster is not led by the University of Reading.
- If the conference organiser has issued a specific poster template (not just simple instructions or sizes) and thus the design is conference-led, not author-led.

Example of a conference-led poster template.

100


Department of Chemis

Thermal transition determination of carboranylene-containing poly(carbosiloxane)s and poly(carbosilane)s

Polycarbosilanes and polycarbosiloxanes

Polymers containing carbon to silicon covalent bonds and m-carboranylene icosobedra (C-B₁₀H₁₀) in the backbone are called poly(*m*-carborane-1.7-div(carbosilane)s. Analogous polymers with Si-O backbone bonds are called poly(m-carborane-1,7-diylcarbosiloxane)s These polymers are of interest as potential thermally stable, low T_g materials. A series of these polymers, both straight-chain and crosslinked, has been prepared (Figure 1).

Correlations between crosslinking and glass transition temperature (T_) of these polymers an of interest in material design, where polymers with a desired T, can be designed and synthesised

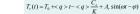
to BH groups and black dots c

Thermal transitions of carborane-containing poly(carbosilane)s and poly(carbosiloxane)s

Thermal transitions are not always discrete like those of linear poly(dimethylsiloxane) [-120 °C (T_a), -80 °C (T_c) and -40 °C (T_m)].¹ Heat flow changes associated with simultaneous transitions observed together in thermograms with consequentially ambiguous onset-, end- and midpoints. Polymers 1 to 4 presented here undergo simultaneous thermal tensions and glass transitions on cooling. Accurate determination of T_a values, necessary to derive correlations between T, and crosslinking in these polymers, is not possible using conventional DSC analysi To accurately determine T_e values of these materials it is first necessary to separate heat flow change associated with a glass transition from heat flow change associated with laxations/tensions, achievable through employment of temperature-modulated DSC (MDSC)

Temperature-modulated DSC

Modulated differential scanning calorimetry (MDSC) can separate enthalpies of transitions that occur reversibly from those that occur irreversibly by employing a sinusoidal oscillation in temperature, superimposed on a conventional constant heat rate $\delta T_b / \delta t = \langle q \rangle$, where T_b is the temperature of the heating chamber (Figure 2). The sample temperature (T_{i}) is defined at steady state by the following expression:


 $T_s(t) = T_0 + \langle q \rangle t - \langle q \rangle \frac{C_s}{K} + A\sin(\omega t - \varepsilon)$

where T₀ is the start temperature, C_s is the heat capacity of the sample plus pan, K is Newton's aw constant for heat flux, A is the maximum amplitude of $T_i(t)$ modulation, ω is the angula modulation and ε is the phase shift relative to the temperature oscillation of the heater.

A similar expression for the reference temperature (T_c) can be written, where A is the maximu amplitude and ϕ is the phase shift

Figure 2 - A sinusoidal temperature modulation (red

ed on a constant heat rate (green

The temperature difference, ΔT , is then proportional to the heat flow

 $\Delta T = T_r - T_s$ Heat flow following temperature modulation measures reversible heat

capacity. Total heat capacity can be extracted from MDSC and the reversible heat capacity subtracted to calculate non-reversible heat capacity. Detailed accounts of MDSC can be found in the literature.^{2,3}

Modulated differential scapping calorimetry was conducted at an average cooling rate of 3 °C min⁻¹ with an amplitude of ± 1.0 °C and a period of 60 s. Samples were heated isothermally at 100 °C for 5 minutes, then cooled to -70 °C. These conditions offer a high heat flow exchange and multiple heating and cooling rates in a single cycle. The MDSC thermogram of straight chain Polymer 1 is shown (Figure 3), with total, reversible and non-reversible heat flow

niversity of Reading

AWE

igure 3 - MDSC thermogram (left) of Polymer 1 (100 °C to -70 °C) and expansions (right). Total hea low (green) is separated into reversible (blue) and non-re ble (red) component

MDSC thermograms of Polymers 1 to 4 including crosslinked derivatives of Polymers 1 and 2, were obtained and determined T_a values are presented (Table 1).

The mean difference in Te measured by total heat flow (DSC) and reversible heat flow (MDSC) is 1.6 °C, but the non-uniformity of this error causes, more interestingly, a vast difference in the derived binomial correlation o T_e with crosslinker concentration (Figure 4). This would have negative repercussion polymer design, for which accurate transition temperatures are sought.

Contact informatio

www.reading.ac.uk/che

Table 1 - T, values of Polymers 1 to 4 measured b

rsible heat flow (MDSC)

total heat flow (DSC) and change i

Figure 4 - Graph of crosslinker concentration vs 7, measured by total heat flow analysis (DSC) an at flow analysis (MDSC) Summary ratures of a series of novel carboranylene-containing polymers have been determined by DSC analysis. Binomial correlations of Te with crosslinking have been derived for Polymers 1 and 2, and a significant improvement in T_g accuracy has been achieved through the employment of tem re-modulated DSC (MDSC) ules, 1987, 20, 1975-197 B. Wunderlich, Y. lin and A. Boller. Theymochim. Acta, 1994, 238, 277-293 I. Okazaki and B. Wunderlich, Moor molecules, 1997, 30, 1758-1764 and

ding Whiteknights RC6 644

Good example

This is an example of good practice when using the University's conference poster PowerPoint templates. It is best to concentrate on your content and allow the template to take care of the rest.

- Page size is the same as the template: A1 (594 mm x 841 mm).
- The colour used is one of nine University colour schemes already built into the templates.
- The University device is in the correct size and position.
- The layout of the banner text at the top is consistent with the original template.
- Correct use of margins and columns with a reasonable gutter between them.
- Easy to read and navigate around the poster.
- Correct fonts are used (Rdg Vesta) throughout.
- Good use of headings to break up text.
- No overlapping text or diagrams.
- References and contact information are clearly laid out and legible.
- Sponsor's logo is in the right place and is of an appropriate size.

If your poster meets these standards, we will print it immediately.

School of Chemistry, Food & Pharmacy, Department of Food and Nutritional Science

THE MENSTRUAL CYCLE AND USE OF ORAL CONTRACEPTIVES HAVE SIGNIFICANT EFFECTS UPON CIRCULATING LONG CHAIN POLYUNSATURATED FATTY ACIDS Anon author | Colleague 2

1. BACKGROUND

There is a gender difference in the ability to convert alpha-linolenic acid (ALNA) to long chain (LC) n-3 polyunsaturated fatty acids (PUFAs), reflected by higher docosahexaenoic acid (DHA) levels in plasma lipid in women. There is growing evidence of the importance of sex hormones in the up-regulation of LC n-3 PUFAs biosynthesis pathways and their effect on the fatty acid composition of plasma and tissues. However, there is a current lack of research assessing the effect of sex hormones on LC n-3 PUFA in young fertile women

2. OBJECTIVES

The aim of this study was to investigate the effect of hormonal variation in the menstrual cycle and use of the contraceptive pill or the LC n-3 PUFA profile in plasma Phosphatidylcholine (PC). Triacylolycerides (TC) and Non-esterified Fatty Acids (NFI

3. METHODS

Fasted blood samples were collected at mid- and end-cycle for women not using oral contraceptives (n = 30) and on day 21 for women using the contraceptive pill (n = 21). The fatty acid composition of plasma PC_TG and NEFA were analysed by gas chromatography. Serum samples of women not using oral contraceptives were analysed for oestradiol, testosterone and progesterone at the Southampton General Hospital using kits from on Coultor Inc. Couth:

STATISTICAL ANALYSIS

The companyon petween the two cycle gays in the non- pill users was performed using a Student's paired t-test. The comparison between the pill and non-pill group was performed via a Student's paired t- test.

monal analysis of serum:

Oestrogen levels were significantly higher at mid cycle (p = 0.011) compared with end cycle in the non-pill group. Testosterone was also found to be significantly higher at mid cycle (p = 0.036). Progesterone levels were not found to be statistically different between the two study days (p = 0.705).

Plasma fatty acid composition:

Table1:Fatty acid composition (% wt total fatty acids) of plasma PC (values are means + standard deviations)

Fatty acids	Non-pil	l (n=30)	Pill (n=21)	
	Mid cycle	End cycle	Pill phase	•γ-linolenic acid (18:3 n-6) content wa
	Mean±SD	Mean±SD	Mean±SD	significantly higher mid-cycle than end
14:0	0.6±0.5	0.6±0.7	0.3±0.1*	cycle among women not using oral
16:0	27.4±1.8	27.9±1.6	29.9±2.6	contraceptives (P = 0.045).
18:0	13.4±1.8	13.8±1.6	10.7±0.8 ^c	
Total	42.5±1.7	43.3±1.6	41.9±2.6 b	 Women using the pill had a significant
saturated				higher content of 18:3 n-6 (P < 0.05) ar
16:1 n+7	0.7±0.3	0.6±0.3	0.7±0.2	20:4 n-6 (P < 0.001) than women not u
18:1 n-9	12.7±5.7	13.1±5.2	11.1±1.7	oral contraceptives, and significantly lo
Total MUFA	16.9±4.3	16.3±5.7	13.8±1.9 °	plasma PC 18:2 n-6 (P = 0.048) than en
18:2 n-6	21.6±3.2	22.3±3.1	20.9 ±2.2 ^b	cycle samples from women not using o
18:3 n-6	0.3±0.2	0.2±0.1*	0.5±0.2 °	contraceptives.
20:4 n-6	8.2±2.1	7.6±2.4	10.2±1.6°	contraceptives.
Total n+6 PUFA	34,2±4.1	33.7±4.9	37.4±3.7 °	. More en colo e the e fill he defeatiff conth
18:3 n-3	0.5±0.6	0.6±0.6	0.5±0.5	Women using the pill had significantly
20:5 n-3	1.1±0.7	1.1±0.9	1.2±0.6	lower 22:5 n-3 (DPA) content than m cycle samples from women not using
22:5 n-3	1.0±0.3	0.9±0.3	0.8±0.2*	
22:6 n-3	3.9±1.4	4.0±1.5	4.4±1.2	contraceptives (P= 0.025).
Total n+3 PUFA	6.4±2.2	6.6±2.3	7.2±1.9	
a significant differ b significant differ c significant differ	ence in comparison	with end cycle.		 No significant differences in plasma Pl DHA levels was found due to the mensi cycle or oral contraceptive use.

Fatty acids	Non-pil	1 (n=30)	Pill(n=21)]
	Mid cycle	End cycle	Pill phase	
ŀ	Mean±SD	Mean±SD	Mean±SD	Women using the pill had
14:0	1.5±0.5	1.5±0.6	1.2±0.4*	significantly lower
16:0	23.2±4.3	23.0±2.8	22.0±3.0	docosahexaenoic acid (DHA
18:0	11.5±4.5	12.4±3.5	11.0±2.0	content than mid-cycle
Total saturated	38.2±6.9	38.7±5.3	35.7±3.44	samples from women not
16:1 n-7	2.9±1.4	2.8±1.2	3.2±0.9	using oral contraceptives
18:1 n-9	32.1±6.1	32.0±6.2	33.6±4.1	(P=0.002).
Total MUFA	40.1±6.9	39.5±7.2	40.4±4.2	1
18:2 n-6	13.0±4.7	13.9±4.3	13.2±1.9	1
18:3 n-6	0.5±0.3	0.5±0.3	0.5±0.2	1
20.4 n-6	1.8±1.9	1.8±1.9	2.7±1.9	1
Total n-6 PUEA	17.2±5.8	17.9±5.9	18.9±2.8	1
18:3 n-3	2.0±2.5	1.3±0.5	1.5±0.4	1
20.5 n-3	0.6±0.5	0.8±0.9	0.6±0.2	
22.5 n-3	0.6±0.4	0.5±0.4	0.7±0.2	1

Table 2: Fatty acid composition (% wt total fatty acids) of plasma NEF/

(values are means ± standard deviations).

eee University of Reading

MRC Care

Accepto

Table 3: Fatty acid composition (% wt total fatty acids) of plasma TG (values are means ± standard deviations)

Fatty acids	Non-pill (n=30)		Pil(n=21)	
	Mid cycle	End cycle	Pill phase	• Women using the pill had a
	Mean±SD	Mean±SD	Mean±SD	significantly lower content o
140	2.0±1.0	1.9±0.7	1.4±0.7 *	14:0 (P < 0.03) and 18:0 (P <
16:0	21.5±2.6	20.7±3.6	24.8±2.91	0.001) than women not usin oral contraceptives, and
18:0	5.1±2.8	5.9±4.7	2.5±0.51	significantly higher plasma T
Total saturated	31.3±4.5	31.7±6.7	29.8±3.3	16:0 (P = 0.001) than both
16:1 n-7	3.0±1.0	2.7±0.8	3.9±0.84	samples from women not
18:1 n-9	35.1±4.8	34.0±7.0	38.2±3.4*	using oral contraceptive pill.
Total MUEA	41.3±4.3	40.8±5.0	44.4±3.7°	
18:2 n-6	17.9±4.3	17.9±5.8	17.4±2.2	 Women using the pill had
18:3 n-6	0.5±0.4	0.6±0.5	0.6±0.4	significantly lower 22:5 n-3
20:4 n-6	1.9±1.0	2.0±0.9	2.0±0.7	(DPA) content than mid-cycl
Total n-6 PUEA	21.7±4.3	22.2±6.1	21.5±2.6	samples from women not
18:3 n-3	1.9±1.7	2.0±2.0	1.4±0.4	using oral contraceptives (P
20.5 n-3	1.1±1.4	0.8±0.5	0.6±0.2	0.025).
22:5 n-3	0.8±0.5	0.7±0.5	0.6*±0.2	
22.6 n-3	1.9±1.7	1.7±1.6	1.5±0.6	
Total n-3 PUEA	5.7±3.8	5.2±3.7	4.1±0.9*	

Figure 1: DHA proportion of plasma NEFA in women on the pill and no taking the pill (values are means ±SEMs)

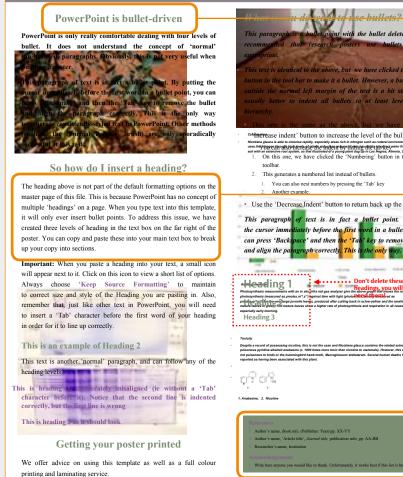
6.CONCLUSION:

2.5

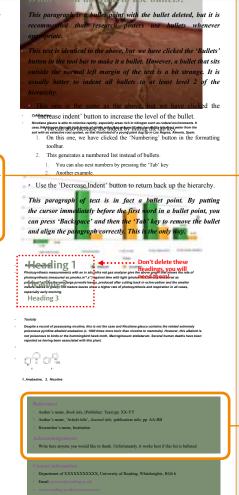
DHA9

There is a significant effect of the menstrual cycle and use of oral contraceptives upon circulating LC PUFA status. This provides furthe evidence that variations in female sex hormone status, either due to the menstrual cycle or the use of oral contraceptives, can influence LC PUFA status

Contact information Department of Food and Nutritional Sciences, University of Reading, Email: i.a.bindayel@reading.ac.uk


Fair example

Here are some of the things that should be avoided when using our templates, some of which are illustrated in this example.


- Bold text on the main title shouldn't be used.
- Don't use ALL CAPS for text or headings.
- The depth of the coloured banner should not be altered.
- Don't add multiple unit names on the title banner one is sufficient.
- Incorrect margins or gutters.
- Not using standard bullets (i.e. the text wraps back underneath them).
- Sponsor's logo is in the wrong place.
- Not using columns or using just one across the poster width.
- It's not usually necessary to use numbers to aid navigation but it can be useful.
- Poor legibility on email addresses and URLs due to underline (this is actually a hyperlink that PowerPoint has added).
- Poorly laid out content (i.e. boxes don't align or reading order is not clear).
- Other fonts used instead of University fonts.

If your poster is at about this level, we will print it immediately, but we may invite you to re-read these guidelines or attend a hands-on workshop with DPS at a later stage.

This is an example of a short, informative split over two lines

To get your poster printed, please contact Design & Print Studio at posters@reading.ac.uk

First University of Reading

Poor example

This is an example of poor practice when using the University's PowerPoint conference poster templates. Clearly there are problems with this file, some examples of which are listed here.

- University fonts not used at all
- Device has been stretched, covered, altered or moved.
- Completely different colour schemes used, i.e. not University colour schemes from the template.
- Fully justified body text, rather than left-aligned.
- Centred text (titles, subtitles).
- Legibility of content has been lost.
- Page size has been altered from template (keep it at A1 in the file but ask DPS to print at a different size, if required).
- Top banner content has been altered, i.e. black text on colour.

If your poster has a lot of these kinds of problems, we **may not** be able to print it.

Instead, we will ask you to review these guidelines again and re-submit a new version.

Alternatively, you can commission one of our team to bring it in line with University guidelines for you, as part of our premium design service (see next page).

Before

School of Psychology & Clinical Language Sciences

OADF Reading

Auditory Distraction during Semantic Processing: Data and a Model

Anonymous Author 1 | Anonymous Author 2, School of Psychology Cardiff University | Anonymous Author 3, School of Psychology Cardiff University

Abstract:

Experiment.

Hughes, & Jones, 2008).

 \sim

dategory.

An experiment demonstrates how free recall of visually-presented, categorically-related lists of words is disturbed by the presence of auditory distracters which subjects were instructed to ignore. Auditory distracters from the same category as the to-be-recalled items produced the most ce to recall and the most intrusion errors Additionally, the points at which these intrusion errors occured differed dependent upon whether recall was written or spoken. A variant of the SIMPLE (Scale Invariant Memory Perceptual LEarning) model (Brown, Neath & Chater 2007) is applied to these data.

In free recall tasks, to-be-ignored (TBI) items disrupt correct recall

of lists of exemplars drawn from single semantic categories.

especially if the distracting items are semantically similar to the

to-be-remembered (TBR) exemplars. Moreover, in such tasks, TBI

items are frequently falsely recalled (Beaman, 2004; Marsh

This experiment looks at how the timing of TBI items affects their

appearance in oral and written recall protocols. Fifteen items

were visually presented at a rate of 1 item/second. Recall was

cued 5s later. A sequence of TBI items from the same category as

the TBR items was presented simultaneously. Figure 1 shows the

number of correct recalls at each serial position relative to a

control confinentiation which the TBI items were from a different

Figure 1: Serial position function for correct recalls

whether they were part of the TBR list or not. (Figure 3).

Problems are encountered when the position in which items

classified as intrusion errors are graphed in the same way. It is

not immediately clear how intrusion errors should be generated

using a model such as SIMPLE, but a further experiment showed

that subjects were capable of generating items before estimating

If distracters are simply items with a higher threshold of acceptance their recall can be modelled in the same way as TRR items. However, if this is done the serial position curves are flat (Figure 4), and do not provide a good fit to the data for oral

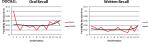
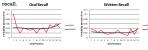


Figure 4: Intrusions by presentation position and output modality. Only the related item condition is presented here as insufficient intrusions occurred in unrelated conditions. Oral recall produced reliably more intrusions than written recall and this interacted significantly with serial position.


Discussion

These data are broadly compatible across recall modalities. In both cases there was a statistically significant effect of the relatedness of the TBI list. It is straightforward to fit an extant model of free recall to these data if only these correct recalls are considered. Figure 2 shows fits obtained using the SIMPLE model (see Brown et al., 2007, for details) . Free parameters (c, threshold, Related items, Oral Recall Related Items, Oral Recall Unrelated Items, Oral Recall noise) were estimated by minimizing Summed Square Error using

Mar /

the	Nelder-Mead method.	
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Secil Pedia	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 5etal Padias
	Related Items, Written Recall	Unrelated Items, Written Recall
Vehicley Core of Social		
	1 2 2 4 5 6 7 8 9 10 11 12 12 14 15 Secial Peekline	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Setal Position
Fig	jure 2 : Fits of the model to	correct recall by serial position.

Figure 3: Results of asking subjects to recall all the items they remembered and then label them, as TBR (accept) or TBI (reject)

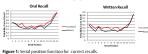
Data from a free recall task where only correct items are considered and disruption is caused by concurrent irrelevant information can be modelled reasonably well regardless of output type. Intrusion errors that also appear in the free recall protocol are less easy to model, in part because of their interaction with output type (beyond the scope of most models) but also because there is no clear mechanism for a consideration

References		
	 The irrelevant sound phenomenon revisiter Journal of Experimental Psychology: Learning. 	
2. Brown, G. D. A., Ne Psychological Revi	aath, I., & Chater, N. (2007). A temporal ratio m ew, 114, 539-576.	odel of memory.
Mamh I P Booko	o D W A Lance D M /9000 Anditorn distant	tion in computio memory R
Contact informat	tion	
	ogy & Clinical Language Sciences, University kahire, RG6 6 & AL, United Kingdom	of Reading, Earley Gate,
· Email: c.p.beama:	n@reading.ac.uk	12.000
· www.reading.ac.	uk/psychology/about/staff/c-p-beaman.a:	spx

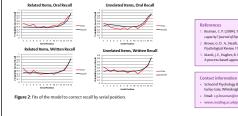
After

Reading Auditory Distraction during Semantic ORDIFF Processing: Data and a Model ORD

Abstract


An experiment demonstrates how free recall of visually-presented categorically-related lists of words is disturbed by the presence of auditory distracters which subjects were instructed to ignore Auditory distracters from the same category as the to-be-recalled items produced the most disturbance to recall and the most intrusion errors. Additionally, the points at which these intrusion errors occured differed dependent upon whether recall was written or spoken. A variant of the SIMPLE (Scale Invariant Memory and Perceptual LEarning) model (Brown, Neath & Chater, 2007) is applied to these data

School of Psychology & Clinical Language Sciences


Experiment

In free recall tasks, to-be-ignored (TBI) items disrupt correct recall of lists of exemplars drawn from single semantic categories, especially if the distracting items are semantically similar to the to-be-remembered (TBR) exemplars. Moreover, in such tasks. TBI items are frequently. falsely recalled (Beaman, 2004; Marsh, Hughes, & Jones, 2008).

This experiment looks at how the timing of TBI items affects their appearance in oral and written recall protocols. Fifteen items were visually presented at a rate of 1 item/second. Recall was cued. 5s later A sequence of TBI items from the same category as the TBR items was presented simultaneously. Figure 1 shows the number of correct recalls at each serial position relative to a control condition in which the TBI items were from a different category.

These data are broadly compatible across recall modalities. In both cases there was a statistically significant effect of the relatedness of the TBI list. It is straightforward to fit an extant model of free recall to these data if only these correct recalls are considered. Figure 2 shows fits obtained using the SIMPLE model (see Brown et al., 2007, for details) Free parameters (c, threshold, noise) were estimated by minimizing Summed Square Error using the Nelder-Mead method

Problems are encountered when the position in which items classified as intrusion errors are graphed in the same way. It is not immediately clear how intrusion errors should be generated using a model such as SIMPLE, but a further experiment showed that subjects were capable of generating items before estimating whether they were part of the TBR list or not. (Figure 3).

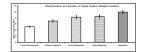


Figure 3: Results of asking subjects to recall all the items they remembered and the label them, as TBR (accept) or TBI (reject

If distracters are simply items with a higher threshold of acceptance their recall can be modelled in the same way as TBR items. However, if this is done the serial position curves are flat (Figure 4), and do not provide a good fit to the data for oral recall

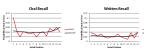


Figure 4: Intrusions by presentation position and output modality. Only the related lition is presented here as insufficient intrusions occurred in ur conditions. Oral recall produced reliably more intrusions than written recall and this interacted significantly with serial position.

Discussion

Data from a free recall task where only correct items are considered and disruption is caused by concurrent irrelevant information can be modelled reasonably well regardless of output type. Intrusion errors that also appear in the free recall protocol are less easy to model, in part because of their interaction with output type (beyond the scope of most models) but also because there is no clear mechanism for a consideration stage, at which the source of interfering information is considered and where such information may be excluded if appropriate.

Before and after examples: what are the quick fixes?

- Additional logo was amended to be white and in the correct size and position.
- Author section is now neater and fits onto the top banner on one line.
- Body text corrected to leftaligned, not fully justified.
- Line spacing on the right-hand column was tightened up.
- More space was created around the References and Contact details boxes so they stand out more.
- Removal of unnecessary full stops on headings.
- Main title bold text brought back to regular.
- Overlapping of diagrams and text rectified.
- Logo at the bottom is now better placed within a box and not hanging off the page.
- Boxes at bottom amended for legibility - back to purple.
- Fonts are Rdg Vesta again.

However, if you would like DPS to make these changes for you, our premium poster design service is available at £60 per hour.

The changes in this example would take us around 15 minutes, for a charge of £15.